
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

The Portals 3.0 Data Movement Layer

Ron Brightwell
Sandia National Labs

Scalable Computing Systems Department
rbbrigh@sandia.gov

What is Portals?

• A data movement layer
– Data movement is fundamental to more than just

parallel applications
– Runtime systems, I/O systems, parallel debuggers

• A programming interface
– User-level or kernel-level

• Not a programming model
• Not a protocol

System Software R&D at Sandia

• Intel Paragon
– 1890 compute nodes
– 3680 i860 cpu’s
– 143/184 GFLOPS
– 175 MB/sec network

• SUNMOS lightweight kernel
– High performance compute node

OS for distributed memory MPP’s
– Deliver as much performance as

possible to apps
– Small footprint
– Started in January 1991 on the

nCUBE-2 to explore new message
passing schemes and high-
performance I/O

– Ported to Intel Paragon in Spring
of 1993

System Software R&D (cont’d)

• Intel TeraFLOPS
– 4576 compute nodes
– 9472 Pentium II CPU’s
– 2.38/3.21 TFLOPS
– 400 MB/sec network

• Puma lightweight kernel
– Multiprocess support
– Modularized (QK, PCT)
– Developed on nCUBE-2 in 1993
– Ported to Intel Paragon in 1995
– Ported to Intel TFLOPS in 1996

(Cougar)
– Portals 1.0

• User/Kernel managed buffers
– Portals 2.0

• Avoid buffering and memory
copies

System Software R&D (cont’d)

• Computational Plant
– 1,792 compute nodes
– ~2 TeraFLOPS peak
– 706+ GFLOPS on 1369

nodes
– 120 MB/sec network

• Started in late 1997
• Linux operating system

– Leverage commodity OS
• Scalable runtime system
• Portals 3.0

– New API for commodity
hardware

MPP Network: Paragon and ASCI/Red

Memory

Processor Processor

Memory
Bus

Network FIFOs

Background: Portals 0

• SUNMOS (Sandia/UNM OS)
– Modeled on Vertex (the OS for the nCUBE)
– Dynamic allocation for incoming messages

• Experiments
– Multiple paths
– Pre-posted receives
– Use of message co-processor

• nCUBE-2 and Intel Paragon
– Direct access to network FIFO’s
– Message co-processor (Paragon)

Background: Portals 1.0

• Moved all message reception structures to user-
space

• Types of portals
– Kernel-managed
– Single-block

• Never implemented
• Published ☺

Background: Portals 2.0

• Separate message selection from memory
descriptors

• More types of memory descriptors
– Kernel-managed (dynamic)
– Single block
– Independent block
– Combined block (never fully implemented)

• Intel ASCI/Red
– Direct access to network FIFO’s
– Message co-processor

ASCI/Red Ping-Pong MPI Latency Performance

Commodity Network: Myrinet, Quadrics, …

Memory
Bus

PCI
Bus

Bridge

Processor Memory

NIC

Network

Problems with Portals 2.0

• No API
– Data structures entirely in user-space
– Protection boundaries have to be crossed to

access data structures
– Data structures must be copied, manipulated, and

copied back
– Requires interrupts

• Address validation/translation on the fly
– Incoming messages trigger address validation
– Doesn’t fit Linux model of validating addresses on

a system call for the currently running process

Portals 3.0

• Operational API
• Unified memory descriptors
• Commodity processors and networks

– Alphas, IA-32, IA-64, etc.
– Linux OS with modules
– Myrinet, Quadrics, etc.
– DMA access to memory

• Fundamental change
– NIC doesn’t have logical address maps
– NIC access to memory needs to be carefully managed

Features

• Reliable, in-order delivery
• Well-defined transport failure semantics
• Expected messages
• One-sided operations

– Put and Get
• Zero-copy message passing

– Increased bandwidth
• OS-bypass implementation

– Reduced latency
• Application-bypass semantic

– No polling, no threads
– No host CPU utilization
– Reduced software complexity

Portal Addressing
Portal Table

Match List
Memory

Descriptors

Event Queue
Memory
Regions

Portal Space
Application
Space

Operational Boundary

Access Control Table

Example: Implementing MPI

Match none

Match any

Match any

short, ACK

short, ACK

short, ACK

0, truncate, ACK

Pre-posted receives

Marker

Event
Queue

buffer

buffer

buffer

Match any

Match any

What Makes Portals Different?

• Provides elementary building blocks for supporting higher-
level protocols well

• Allows structures to be placed in user-space, kernel-space,
or NIC-space

• Allows for OS-bypass implementations
• Receiver-managed offset allows for efficient and scalable

buffering of unexpected messages
• Supports multiple protocols within a process
• Runtime system independent
• Well-defined failure semantics
• Application-bypass semantic is a good thing

MPI Double-Buffer Benchmark

Rank 0
isend A;
isend B;
for () {

fill A; wait CTS A;
isend A;

fill B; wait CTS B;
isend B;

}

Rank 1
start = get_time();
for () {

wait A; sum A;
isend CTS A;

wait B; sum B;
isend CTS B;

}
end = get_time();

MPI Double-Buffer Performance

Current NAL Implementations

• RTS (Sandia)
– Linux kernel module that does reliability and flow control
– Can use any Linux network device (skbufs)

• IP (Sandia)
– Reference implementation
– Really UNIX Pipes

• Quadrics ELAN3 (Sandia)
– Uses ELAN thread and DMA queues

• Myrinet MCP (Sandia)
– Designed to work with Cougar

• Alteon GigE (University of New Mexico)
• In-kernel TCP/IP (Peter Braam, Cluster File Systems, Inc.)
• Quadrics ELAN Kernel Comms (Marcus Miller, LLNL)
• Quadrics Tports (Unlimited Scale, Inc.)

Portals 3.0 Myrinet MCP Implementation

Supported Higher-Level Systems

• High-level message passing libraries
– MPICH
– MPI/Pro, ChaMPIon/Pro
– RPC
– InterComm
– Intel NX
– nCUBE Vertex
– Initial MPI-2 one-sided

specification from March 1996
– Cray SHMEM variant

• Cplant™ Runtime system
– Distributed server library
– Dynamic process creation library

• File systems
– ASCI/Red fyod
– Cplant™ ENFS
– Lustre

• In progress
– MPI-2 one-sided (MSTI)
– TotalView channel implementation

(Sandia)

New OS Initiative - Filling the Gap

• Two most scalable systems did not use full UNIX-based
operating systems (ASCI/Red,Cray T3)

• Current and future initiatives for tera-scale and peta-scale
systems are focusing more on hardware architecture and
programming models, less on operating systems and
runtime system support

• Still many basic research questions regarding operating
systems and runtime systems for 100 teraOPS and petaOPs
platforms (extensibility, fault tolerance, etc.)

• Need to start gathering support for new initiative now
• First workshop in March associated with WIMPS
• Next workshop coming soon

Question #3

• How to develop middleware and run-time support so that
the abstractions of the programming models can be
implemented in a portable and high-performance manner
while remain compatible with future networking and
computing technologies?
– Develop abstractions that map well to future hardware
– Develop abstractions that future hardware can map well

to
– Well-defined components and abstractions
– Well-defined interfaces between components
– Discourage vendors from providing the entire system

